Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (0 0 1) fcc single crystal

B Eidel

Pyramidal microindentation into the (0 0 1) surface of an face-centered cubic (fcc) single crystal made of a Ni-base superalloy is analyzed in experiment and crystal plasticity finite-element simulations. The resultant material pile-up at the surface reflects the material’s symmetry and turns out to be insensitive to different loading scenarios as induced by (i) different azimuthal orientations of the pyramidal indenter, (ii) different indenter shapes (sphere or pyramid) and (iii) the elastic anisotropy. Experiments and simulations are in agreement and suggest that pile-up deformation patterns merely depend on the geometry of discrete slip systems but are invariant to different anisotropic stress distributions as induced by (i)–(iii). The local adaption of pile-up to the pyramidal indenter leads to convex or concave indent shapes corresponding to the indenter orientation. We contrast the present findings for curved indent shapes of fcc single crystals to similar, well-known observations for quasi-isotropic polycrystals. Although phenomenologically similar in kind, the driving mechanisms are different: for the single crystal it is the discrete and anisotropic nature of plastic glide in certain slip systems; for isotropic polycrystals it is the rate of strain-hardening caused by the cumulative response of dislocations.

Phase transformation in free-standing SMA nanowires

F R Phillips et al

The primary focus of this work is on determining if the phase transformation of shape memory alloy (SMA) nanowires exhibits a critical size below which the phase transformation is inhibited. The SMA nanowires are fabricated through the use of the mechanical pressure injection method. The mechanical pressure injection method is a template-assisted nanowire fabrication method in which an anodized aluminum oxide (AAO) template is impregnated with liquid metal. The fabrication of SMA nanowires with different diameters is accomplished through the fabrication of AAO templates of varying diameters. The phase transformation behavior of the fabricated SMA nanowires is characterized using transmission electron microscopy. By analysis of the fabricated SMA nanowires, it is found that the phase transformation of SMA nanowires is not affected for nanowires ranging in diameter from 650 to 10 nm.

The role of strain accommodation during the variant selection of primary twins in magnesium

J J Jonas et al

Samples of magnesium alloys AM30 and AZ31 were deformed in tension at room temperature and a strain rate of 0.1 s−1 to strains of 0.08 and 0.15. Of the numerous contraction twins that formed, the orientations of 977 were determined by electron backscatter diffraction techniques. The orientations of their host grains were also measured, so that the Schmid factors (SFs) applicable to each of the six contraction twins that could potentially form in each grain could also be calculated. About half of the observed twins were of the “high SF” (0.3–0.5) type, while nearly half had “low” SFs (0.15–0.30). Furthermore, 5% of the observed twins had associated Schmid factors of only 0.03–0.15, i.e. these were of the “very low SF” type. Of particular interest is the observation that many potential “high Schmid factor” twins did not form. The presence of the low and very low SF twins and the absence of many potential high SF twins are explained in terms of the accommodation strains that are or would be required to permit their formation. These were calculated by rotating the twinning shear displacement gradient tensor into the crystallographic reference frame of the neighboring grain. It is shown that the very high plastic anisotropy of Mg grains permits the “easy” accommodations to take place but conversely prevents accommodation of the potential twinning shears when these are “difficult” (when these involve high critical resolved shear stresses). The twins that appear require little or no “difficult” accommodation.

Advertisements

Title: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials

Authors: X Chen, N Ogasawara, M Zhao, and N Chiba

Source: Journal of Mechanics and Physics of Solids (Article in press)

Abstract:

Indentation is widely used to extract material elastoplastic properties from the measured force–displacement curves. One of the most well-established indentation techniques utilizes dual (or plural) sharp indenters (which have different apex angles) to deduce key parameters such as the elastic modulus, yield stress, and work-hardening exponent for materials that obey the power-law constitutive relationship. However, the uniqueness of such analysis is not yet systematically studied or challenged. Here we show the existence of “mystical materials”, which have distinct elastoplastic properties yet they yield almost identical indentation behaviors, even when the indenter angle is varied in a large range. These mystical materials are, therefore, indistinguishable by many existing indentation analyses unless extreme (and often impractical) indenter angles are used. Explicit procedures of deriving these mystical materials are established, and the general characteristics of the mystical materials are discussed. In many cases, for a given indenter angle range, a material would have infinite numbers of mystical siblings, and the existence maps of the mystical materials are also obtained. Furthermore, we propose two alternative techniques to effectively distinguish these mystical materials. The study in this paper addresses the important question of the uniqueness of indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material elastoplastic properties.

Internet resources: The pointer at iMechanica