A couple of papers from the latest PNAS:

[1] Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

M E Launey et al

The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems.

[2] Instability of stationary liquid sheets

A M Ardekani and D D Joseph

The rupture of a 3D stationary free liquid film under the competing effects of surface tension and van der Waals forces is studied as a linearized stability problem in a purely irrotational analysis utilizing the dissipation method. The results of the foregoing analysis are compared with a 2D long-wave approximation that has given rise to an extensive literature on the rupture problem. The irrotational and long-wave approximations are here compared with the exact 2D solution. The exact solution and the two approximate theories give the same results for infinitely long waves. The problem considered depends on two dimensionless parameters, the Hamaker number and the Ohnesorge number. The Hamaker number is a dimensionless number defined as a measure of the ratio of van der Waals forces to surface tension. The exact solution and the two approximate solutions differ by < 1% when the Hamaker number is small for all values of the Ohnesorge number. When the Ohhnesorge number is close to one, as in the case of water films separated by distance 100 Å, the long-wave approximation overestimates and the potential flow approximation underestimates the exact solution by similar small amounts. The high accuracy of the dissipation method shows that the effects of vorticity are small for small to moderate Hamaker numbers.