Some recent papers from scripta:

[1] Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions

F Yang and W Yang

A kinetic model is developed to quantify the rate of grain rotations driven by either grain boundary energy or stress. The critical roles of triple junctions and grain shape are emphasized. The size effects for the rotation rate are analyzed. As the grain size decreases, the model predicts shifts in the dominating driving forces and dissipation mechanisms.

[2] Direct non-destructive observation of bulk nucleation in 30% deformed aluminum

S S West et al

A 30% deformed aluminum sample was mapped non-destructively using Three-Dimensional X-ray Diffraction (3DXRD) before and after annealing to nucleation of recrystallization. Nuclei appeared in the bulk of the sample. Their positions and volumes were determined, and the crystallographic orientations were compared with the orientations of the deformed grains. It was found that nuclei with new orientations can form and their orientations have been related to the dislocation structure in the deformed grains.

[3] Dynamic abnormal grain growth: A new method to produce single crystals

J Ciulik and E M Taleff

Dynamic abnormal grain growth (DAGG) is a newly discovered phenomenon which can be used to produce large single crystals from polycrystalline material in the solid state at temperatures above approximately half the melting temperature. The unique aspect of DAGG, compared to previously understood abnormal grain growth phenomena, is the requirement of plastic straining for initiation and propagation of abnormal grain growth. Our findings demonstrate that DAGG can be used to produce large single crystals of molybdenum in the solid state.

[4] Evaluation of the liquid-solid interfacial energy from crystallization kinetic data

J Torrens-Serra et al

The kinetic data obtained from the analysis of experimental measurements of nanocrystallization in Fe65Nb10B25 metallic glass are used to successfully estimate the molten alloy viscosity, Fe23B6 crystallization driving force and solid-liquid interface energy in the framework of the classical theory of nucleation and growth. We use a Vogel-Fulcher-Tamman law for the viscosity and linear temperature dependence for the crystallization driving force and interfacial energy. A negative temperature coefficient for the crystal-melt interfacial energy is obtained. Both the thermal stability and the glass forming ability of this alloy are discussed.

[5] Experimental study of the miscibility gap and calculation of the spinodal curves of the Au–Pt system

X N Xu et al

The miscibility gap (MG) of the Au–Pt binary system in the temperature range 600–1050 °C has been experimentally determined by the diffusion couple technique. The results show that the determined MG deviates from the currently accepted one, which shifts to the Au-rich side of the Au–Pt system. Based on the present experimental data, the Au–Pt system has been thermodynamically reassessed, with the result that the critical point of the miscibility gap is not, vert, similar1200 °C at 56 at.% Pt, in contrast to the currently accepted 1260 °C at 61 at.% Pt. The chemical and coherent spinodals of the Au–Pt system have been thus calculated.

[6] Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry

C Garcio-Mateo et al

It is possible by means of high-resolution dilatometry, together with a model based on isotropic dilatation and atomic volumes, to estimate the dislocation density introduced in the microstructure as a consequence of the isothermal decomposition of austenite into bainitic ferrite. The relatively high dislocation density associated with this microstructure is attributed to the fact that the shape deformation accompanying this displacive transformation is accommodated by plastic relaxation.

[7] Magnetic phase transition and magneto-optical properties in epitaxial FeRh0.95Pt0.05 (0 0 1) single-crystal thin film

W Lu et al

This paper reports an investigation of the structure, magnetic phase transition and magneto-optical properties of FeRh0.95Pt0.05 thin film. A first-order magnetic phase transition occurs at a temperature around 180 °C, accompanied by a lattice expansion in the c-axis. The effect of substitution on the phase transition in ordered FeRh-based alloy systems is discussed. The nucleation and growth mechanism of the phase transition is quite similar to that of the crystallization of solids. In addition, the Kerr rotation spectrum was also studied.

Advertisements

Title: Feynman’s wobbling plate

Authors: Slavomir Tuleja, Boris Gazovic, Alexander Tomori and Jozef Hanc

Source: American Journal of Physics, Vol. 75, No. 3, pp. 240–244, March 2007

Abstract: In the book Surely You Are Joking,Mr. Feynman! Richard Feynman tells a story of a Cornell cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation between the two motions. He solved the motion of the plate by using the Lagrangian approach. This solution didn’t satisfy him. He wanted to understand the motion of the plate by analyzing the motion of its individual particles and the forces acting on them. He was successful, but he didn’t tell us how he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin frequencies, based on an analysis of the motion of the particles and the forces acting on them. We also demonstrate the power of numerical simulation and computer animation to provide insight into a physical phenomenon and guidance on how to do the analysis.

Internet resources: Java applets and supplementary information