GB migration, phase transformations in ice and damage evolution simulations

October 8, 2011

[1] Migration of grain boundaries in free-standing nanocrystalline thin films

Dynkin and Gutkin

Theoretical models are suggested which describe stress-coupled migration of grain boundaries in free-standing nanocrystalline films under external loading. The critical stresses for the start of migration and the transition from stable to unstable migration are calculated and analyzed in dependence on the grain size, grain boundary misorientation angle, film thickness, distance from the closest free surface, and migration direction. It is shown that the least stable are low-angle grain boundaries of larger length which emerge on surfaces of thinnest films.

[2] Insight into the phase transformations between Ice Ih and Ice II from electron backscatter diffraction data

D J Prior et al

Electron backscatter diffraction data from polycrystalline water ice, cycled three times through the 1h to II phase transformation, show that an area equivalent to the original grain-size (∼450μm) now comprises equant 10μm grains with a non-random crystallographic preferred orientation (CPO). Pole figures show small-circle ring and fence patterns characteristic of CPO development controlled by an orientation relationship during phase transformation. Misorientation analysis shows that one of two orientation relationships can explain the data: 1h/II, {10-10}1h/{0001}II or 1h/II, {10-10}1h/{0001}II .

[3] Comment on ”Simulation of damage evolution in composites: A phase-field model”

Emmerich and Pilipenko

Here we reassess the results of [S.B. Biner, S.Y. Hu Acta Matt. 57(2009) 2088-2097] on phase-field simulations of damage evolution in composite materials. In particular we discuss the validity of the results presented therein in the framework of linear elasticity theory.

Update: Reply to “comment on simulation of damage evolution In composites: a phase-field model by H. Emmerich and D. Pilipenko ”

Biner and Yu

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: