Solidification kinetics and solute-dislocation interactions

July 12, 2010

[1] Modeling the overall solidification kinetics for undercooled single-phase solid-solution alloys. I. Model derivation

H Wang et al

Departing from the volume-averaging method, the equiaxed solidification model was extended to describe the overall solidification kinetics of undercooled single-phase solid-solution alloys. In this model, a single grain, whose size is given assuming site saturation, is divided into three phases, i.e. the solid dendrite, the inter-dendritic liquid and the extra-dendritic liquid. The non-equilibrium solute diffusion in the inter-dendritic liquid and the extra-dendritic liquid, as well as the heat diffusion in the extra-dendritic liquid, is considered. The growth kinetics of the solid/liquid interface is given by the solute or heat balance, where a maximal growth velocity criterion is applied to determine the transition from thermal-controlled growth to solutal-controlled growth. A dendrite growth model, in which the nonlinear liquidus and solidus, the non-equilibrium interface kinetics, and the non-equilibrium solute diffusion in liquid are considered, is applied to describe the growth kinetics of the grain envelope. On this basis, the solidification path is described.

[2] Interactions between carbon solutes and dislocations in bcc iron

H Hanlumyuang et al

Carbon solute–dislocation interactions and solute atmospheres for both edge and screw dislocations in body-centered cubic (bcc) iron are computed from first principles using two approaches. First, the distortion tensor and elastic constants entering Eshelby’s model for the segregation of C atoms to a dislocation core in Fe are computed directly using an electronic-structure-based the total energy method. Second, the segregation energy is computed directly via first-principles methods. Comparison of the two methods suggests that the effects of chemistry and magnetism beyond those already reflected in the elastic constants do not make a major contribution to the segregation energy. The resulting predicted solute atmospheres are in good agreement with atom probe measurements.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: