Dislocation dynamics and GB energies

July 2, 2010

[1] Dislocation dynamics simulations of dislocation interactions and stresses in thin films

R S Fertig III and S P Baker

The dislocation interactions that stop threading dislocations (threads) during relaxation at increasing applied strains in single-crystal thin films are investigated using large-scale three-dimensional dislocation dynamics simulations. Threads were observed to stop via interactions with both threads and misfit dislocations (misfits). Both types of interactions were shown to depend on stress inhomogeneity. Low-stress regions enabled threads to stop in weak thread–misfit interactions even at high average film stresses. Threads were also concentrated in low-stress regions, which facilitated their interaction with other threads. Threads accumulated in thread–thread interactions, and stopped only temporarily in thread–misfit interactions. The mean free path for dislocation motion is shown to be accurately predicted from details of the inhomogeneous stress state arising from the applied strain and the misfit structure. These behaviors are analyzed to present a more complete picture of film strength, strain hardening and relaxation.

[2] Comparing grain boundary energies in face centered cubic metals: Al, Au, Cu and Ni

E A Holm et al

The energy of 388 grain boundaries in Al, Au, Cu and Ni were calculated using atomistic simulations. Grain boundary energies in different elements are strongly correlated. Consistent with a dislocation model for grain boundary structure, the boundary energy scales with the shear modulus. Boundaries with substantial stacking fault character scale with the stacking fault energy. There is more scatter in the data for Al, which has a high stacking fault energy, than for the low stacking fault energy elements.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: