Some recent papers from Acta

June 19, 2010

[1] Dislocation–grain boundary interaction in left angle bracket1 1 1right-pointing angle bracket textured thin metal films

D V Bachurin et al

The interaction of lattice dislocations with symmetrical and asymmetrical tilt grain boundaries in left angle bracket1 1 1right-pointing angle bracket textured thin nickel films was investigated using atomistic simulation methods. It was found that the misorientation angle of the grain boundary, the sign of the Burgers vector of the incoming dislocation and the exact site where the dislocation meets the grain boundary are all important parameters determining the ability of the dislocation to penetrate the boundary. Inclination angle, however, does not make an important difference on the transmission scenario of full dislocations. Only limited partial dislocation nucleation was observed for the investigated high-angle grain boundary. The peculiarities of nucleation of embryonic dislocations and their emission from tilt grain boundaries are discussed.

[2] Comparing calculated and measured grain boundary energies in nickel

G S Rohrer et al

Recent experimental and computational studies have produced two large grain boundary energy data sets for Ni. Using these results, we perform the first large-scale comparison between measured and computed grain boundary energies. While the overall correlation between experimental and computed energies is minimal, there is excellent agreement for the data in which we have the most confidence, particularly the experimentally prevalent Σ3 and Σ9 boundary types. Other CSL boundaries are infrequently observed in the experimental system and show little correlation with computed boundary energies. Because they do not depend on observation frequency, computed grain boundary energies are more reliable than the experimental energies for low population boundary types. Conversely, experiments can characterize high population boundaries that are not included in the computational study. Together the experimental and computational data provide a comprehensive catalog of grain boundary energies in Ni that can be used with confidence by microstructural scientists.

[3] Thermodynamic model of hydride formation and dissolution in spherical particles

Y Mishin and W J Boettinger

A model of hydride formation and dissolution has been proposed for a single spherical particle and for a collection of such particles with a given size distribution. The phase transformation strain gives rise to an elastic barrier to the transformation, which scales with the volume of the particle and produces a hysteresis effect known experimentally. Experimentally observed finite slopes of hydrogen pressure vs. chemical composition plots (instead of expected plateaus) are explained by the model for both the hydrogenization and dehydrogenization processes. These finite slopes and the amount of the pressure hysteresis depend on elastic properties of the hydride and metal phases, the transformation strain, and on the particle-size distribution in the powder.

[4] Application of classical nucleation theory to phase selection and composition of nucleated nanocrystals during crystallization of Co-rich (Co,Fe)-based amorphous precursors

P R Ohodnicki Jr. et al

Classical steady-state nucleation theory is applied to Co-rich Fe,Co-based alloys to provide a rationale for experimental observations during the nanocrystallization of Co-rich (Co,Fe)89Zr7B4 and (Co,Fe)88Zr7B4Cu1 amorphous precursors. The amorphous precursor free energy is estimated using density functional theory. This simple theory suggests: (i) strain or interface energy effects could explain a tendency for a body-centered cubic (bcc) phase to form during crystallization. Dissolved glass formers (Zr,B) in crystalline phases may also contribute; (ii) similar face-centered cubic (fcc) and hexagonal close-packed (hcp) free energies could explain the presence of some hcp phase after crystallization even though fcc is stable at the crystallization temperature; (iii) nanocrystal compositions vary monotonically with the Co:Fe ratio of the amorphous precursor even when multiple phases are nucleating because nucleation is not dictated by the common tangency condition governing bulk phase equilibria; and (iv) Fe-enrichment of the bcc phase can be attributed to a relatively small free energy difference between the amorphous and bcc phases for high Co-containing alloys.

[5] Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers

Q Wei and A Misra

Microstructures and orientation relationships in sputter-deposited, polycrystalline V/Ag multilayers with different individual thicknesses ranging from 1 to 50 nm were investigated. It was found that the wavy morphology of layers resulting from competitive kinetic limitations of deposited atoms gives rise to a variety of orientation relationships between two adjacent layers. At the top or bottom of curved layers Kurdjumov–Sachs and Nishiyama–Wasserman orientations were dominant, while on the slopes of the wavy interfaces close-packed face-centered cubic and body-centered cubic planes joined each other. As a consequence, Bain, Pitsch and many intermediate orientation relationships were generated. In most cases intermediate orientations with 1–3° deviations from the parallel planes or directions in standard orientations were observed. The tilted interfaces, followed by the introduction of disconnections to relieve misfit stress, had a tendency to form an invariant habit plane in which the strain was completely relieved. A model describing disconnections and invariant planes can explain the observed deviations and orientation of the habit plane. Calculations of the evolution of the surface morphology on the basis of the kinetic behavior of deposits were performed to facilitate interpretation of the formation of the wavy structure.

[6] A model for interphase precipitation based on finite interface solute drag theory

R Okamoto and J Agren

A model for interphase precipitation with the ledge mechanism, based on a eutectoid reaction, has been developed and combined with the finite interface solute drag model and a numerical solution of the diffusion equations inside the migrating phase interface. In the model, niobium flows in two directions, i.e. perpendicular to the direction of the ledge migration by eutectoid-like reaction and simultaneously parallel to the direction of the ledge migration inside the ledge interface. The difference between ledge transformation and typical phase transformation is compared using this model and the effects of row spacing, temperature and segregation energy are discussed. The calculation results using the model are compared with experimental results and the critical driving force for interphase precipitation is evaluated. The estimations of the niobium carbide precipitation using this model are in good agreement with experimental results.

[7] Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies

C Perrin et al

In this paper, a new micromechanical approach accounting for the discreteness of intragranular slip is used to derive the local misorientations in the case of plastically deformed polycrystalline nickel in uniaxial tension. This intragranular microstructure is characterized in particular single slip grains by atomic force microscopy measurements in the early stage of plastic deformation. The micromechanical modelling accounts for the individual grain size, the spatial distances between active slip bands and the magnitude of slip in bands. The slip bands are modelled using discrete distributions of circular super glide dislocation loops constrained at grain boundaries for a spherical grain boundary embedded in an infinite matrix. In contrast with classic mean field approaches based on Eshelby’s plastic inclusion concept, the present model is able to capture different intragranular behaviours between near grain boundary regions and grain interiors. These theoretical results are quantitatively confirmed by local electron backscatter diffraction measurements regarding intragranular misorientation mapping with respect to a reference point in the centre of the grain.

[8] Quantitative three-dimensional characterization of pearlite spheroidization

Y-T Wang et al

We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instability and induce shape evolution of the lamellar structure during spheroidization. 3-D visualization demonstrated that the intrinsic holes play an important role in the initiation and development of pearlite spheroidization. The hole coalescence and expansion causes the break-up up of large cementite lamellae into several long narrow ribbons. Furthermore, the growth mechanism of inter-hole coalescence is related to the ratio of half the inter-hole distance on a cementite lamella to the thickness of that lamella. The driving force for hole growth is either the difference in surface energy or the curvature between the hole edges and the adjacent flat surface of the lamella. The morphologies of cementite ribbons depend on the hole expansion position on cementite lamella, and can change their shape to cylinders or small spheres by Rayleigh’s perturbation process after prolonged spheroidization.

[9] Interphase precipitation in niobium-microalloyed steels

R Okamoto et al

The interphase precipitation in niobium steel has been investigated. In the present work, the austenite/ferrite transformation speed should be fast due to hot deformations, and interphase precipitation can be observed after 10 s isothermal holding in the temperature range 923–1023 K. The dominant interphase precipitation is planar and is not oriented on the {1 1 0}α plane suggested by the ledge mechanism but on other planes.

[10] Constraint-dependent twin variant distribution in Ni2MnGa single crystal, polycrystals and thin film: An EBSD study

N Scheerbaum et al

The capability of showing large magnetically induced strains (MFIS) up to not, vert, similar10% has attracted considerable research interest to magnetic shape memory (MSM) alloys. The prototype MSM alloy is the ternary Ni2MnGa. In this work, a comprehensive study of the local unit cell orientation distribution on single crystalline, polycrystalline and epitaxial thin film of martensitic Ni2MnGa is conducted by electron backscattering diffraction (EBSD). By EBSD, the constraint-dependent twin variant distribution, the corresponding stresses and the three-dimensional orientation of twin planes will be investigated. In polycrystals, the differentiation between twin and grain boundaries as well as proof of twin boundary motion is shown. From the knowledge of the local unit cell orientation at surfaces, it is possible to explain the magnetic domain configuration imaged by magnetic force microscopy.

[11] Domain models for ferromagnetic shape-memory materials

A T Onisan et al

A domain model for the twin variant and magnetic domain distribution in bulk systems of ferromagnetic shape-memory materials has been developed. The approach combines crystal elasticity, compatibility of a twinned microstructure with a tetragonal lattice structure, and micromagnetic domain theory. The model is applied to calculate phase diagrams under external magnetic fields and stresses for Ni–Mn–Ga as a magnetic system with easy-axis anisotropy and for Fe–Pd with easy-plane 4-fold anisotropies.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: