Symmetry breaking in smectics

September 16, 2009

An interesting one from latest PNAS:

The homotopy theory of topological defects in ordered media fails to completely characterize systems with broken translational symmetry. We argue that the problem can be understood in terms of the lack of rotational Goldstone modes in such systems and provide an alternate approach that correctly accounts for the interaction between translations and rotations. Dislocations are associated, as usual, with branch points in a phase field, whereas disclinations arise as critical points and singularities in the phase field. We introduce a three-dimensional model for two-dimensional smectics that clarifies the topology of disclinations and geometrically captures known results without the need to add compatibility conditions. Our work suggests natural generalizations of the two-dimensional smectic theory to higher dimensions and to crystals.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: